Synaptic neurotransmitter-gated receptors.
نویسندگان
چکیده
Since the discovery of the major excitatory and inhibitory neurotransmitters and their receptors in the brain, many have deliberated over their likely structures and how these may relate to function. This was initially satisfied by the determination of the first amino acid sequences of the Cys-loop receptors that recognized acetylcholine, serotonin, GABA, and glycine, followed later by similar determinations for the glutamate receptors, comprising non-NMDA and NMDA subtypes. The last decade has seen a rapid advance resulting in the first structures of Cys-loop receptors, related bacterial and molluscan homologs, and glutamate receptors, determined down to atomic resolution. This now provides a basis for determining not just the complete structures of these important receptor classes, but also for understanding how various domains and residues interact during agonist binding, receptor activation, and channel opening, including allosteric modulation. This article reviews our current understanding of these mechanisms for the Cys-loop and glutamate receptor families.
منابع مشابه
Desensitization of neurotransmitter-gated ion channels during high-frequency stimulation: a comparative study of Cys-loop, AMPA and purinergic receptors.
Changes in synaptic strength allow synapses to regulate the flow of information in the neural circuits in which they operate. In particular, changes lasting from milliseconds to minutes (‘short-term changes') underlie a variety of computational operations and, ultimately, behaviours. Most studies thus far have attributed the short-term type of plasticity to activity-dependent changes in the dyn...
متن کاملThe Action Potential, Synaptic Transmission, and Maintenance of Nerve Function
1. Nongated ion channels establish the resting membrane potential of neurons; voltage-gated ion channels are responsible for the action potential and the release of neurotransmitter. 2. Ligand-gated ion channels cause membrane depolarization or hyperpolarization in response to neurotransmitter. 3. Nongated ion channels are distributed throughout the neuronal membrane; voltage-gated channels are...
متن کاملUnderstanding the GABAA receptor: a chemically gated ion channel.
y-Aminobutyric acid (GABA) is the major inhibitory neurotransmitter in the mammalian central nervous system. The predominant effect of GABA is the interaction with a specific receptor protein which results in an increase of the chloride ion conductance of the post-synaptic membrane to produce an inhibition of neuronal firing. In recent years, much attention has been focused on this specific rec...
متن کاملGARLH Family Proteins Stabilize GABAA Receptors at Synapses
Ionotropic neurotransmitter receptors mediate fast synaptic transmission by functioning as ligand-gated ion channels. Fast inhibitory transmission in the brain is mediated mostly by ionotropic GABAA receptors (GABAARs), but their essential components for synaptic localization remain unknown. Here, we identify putative auxiliary subunits of GABAARs, which we term GARLHs, consisting of LH4 and LH...
متن کاملNICOTINE MECHANISMS IN ALZHEIMER’S DISEASE Overview of Nicotinic Receptors and Their Roles in the Central Nervous System
Alzheimer’s disease is a complex disorder affecting multiple neurotransmitters. In particular, the degenerative progression is associated with loss within the cholinergic systems. It should be anticipated that both muscarinic and nicotinic mechanisms are affected as cholinergic neurons are lost. This review focuses on the basic roles of neuronal nicotinic receptors, some subtypes of which decre...
متن کاملThe orphan pentameric ligand-gated ion channel pHCl-2 is gated by pH and regulates fluid secretion in Drosophila Malpighian tubules.
Pentameric ligand-gated ion channels (pLGICs) constitute a large protein superfamily in metazoa whose role as neurotransmitter receptors mediating rapid, ionotropic synaptic transmission has been extensively studied. Although the vast majority of pLGICs appear to be neurotransmitter receptors, the identification of pLGICs in non-neuronal tissues and homologous pLGIC-like proteins in prokaryotes...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Cold Spring Harbor perspectives in biology
دوره 4 3 شماره
صفحات -
تاریخ انتشار 2012